
DEV Team Knowledge 2

 Our Azure Board 4

 User Stories Effort Evaluation 6

 Internal Agile Implementation 7

 Sprint Meeting Checklist 9

 General Glossary and Acronyms 11

 Quickstarts 13

 Refresher Course for new members 14

 Python Environments 19

 Local Docker database 20

 Postgres 21

 Mongodump 22

 How to install a flask service on IIS 24

 VSCode tips 26

 Git tips 27

 Software Development Practices 28

 Which Dev Flow to use 29

 Git Flow 31

 GitHub Flow 34

 Docker Usage 35

 Glossary 38

 Architecturing projects 39

 1 - End User 40

 2 - User Stories 41

 2.1 - Create user rights table 42

 3 - System Features 43

 4 - Software Components 44

 5 - The APIs 45

 6 - The Software 46

 Toolchain Setup 47

 Deployement : What to do 48

 Versioning your projects 49

 Code re-usability 51

 Indexes on database 53

 Conventionnal naming in project 54

 Back-end Convention 55

 Front-end Convention 56

 How to win at Microservices 57

2

DEV Team Knowledge

Where am I ?
You are in the DEV Teams confluence spaces. Here you will find all the

documentation we wrote during our existence.

Even on separate projects 🖐 we must work as a team 👊. This is

especially true when we are so few developers scattered across so various

subjects and problems. Thus we must bring together our collective

knowledge in a way that can benefit everybody and make us save time

and energy !

What can I find here ?
Literally every documentation we wrote or code we produced will be stored

in one of those places. Each space stores some type of documentation you

might want to store. In case of doubt, Ask !

Please bookmark this page

DEV Team Knowledge
📐 Technological and technical knowledge

🏹 How we use Agile to organize our work

🥽 General NovAliX molecular knowledge

useful for us DEVs

💡 Tips for our day2day usage of various

software at NovAliX

How we develop : Software Develop

ment Practices

How we go from dev to prod : Which

Dev Flow to use

DEV Team Infrastructure
⛓ Service Mesh on various environments

(DEV, STAGING, QA, PRODUCTION)

💡 Tips regarding our infrastructure usage

DEV Team Service map / Misc. P

rocedures for our internal INFRA

Uses SharePoint and MSTeams

DEV Team General Project Ma
nagement
� Follow up and user communication on

every ongoing projects

One chapter for each projects

Each project will contain:

The test results to measure the

development quality

Important meetings notes to share

among us

User documentations and FAQs

Meeting presentations

Gantts and other organizational items

How to conduct a sprint meeting: Sp

rint Meeting Checklist

Uses SharePoint and MSTeams

DEV Team Management
📊 Processes and team management

knowledge

📈 More general project planification and

gantt diagrams

Uses SharePoint and MSTeams

[Azure DevOps Board]
Our Agile Board

All of the planification of our work

How to use it : Our Azure Board

[Code repositories novalixofficia
l]
📁 All of our code : and the documentation

addressed to the devs

Each repository will contain :

README

Project Inputs/Outputs doc

Conception diagrams and notes

(.excalidraw.png or .drawio.png)

List of testsheets sent to users (but not

their results)

Example UI and mockups

For all heavy-duty general file storage, go to the

NASSYN provided by the IT :

https://novalix.atlassian.net/wiki/spaces/DTKnowledge
https://novalix.atlassian.net/wiki/spaces/DTKnowledge
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100750
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100750
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100750
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24838310
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24838310
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24838310
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/24805425
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/24805425
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/31097004
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/31097004
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/31097004
https://novalix.atlassian.net/wiki/spaces/DTGeneralProjectManagement
https://novalix.atlassian.net/wiki/spaces/DTGeneralProjectManagement
https://novalix.atlassian.net/wiki/spaces/DTGeneralProjectManagement
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24871330
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24871330
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24871330
https://novalix.atlassian.net/wiki/spaces/DTManagement
https://novalix.atlassian.net/wiki/spaces/DTManagement
https://dev.azure.com/novalix/NovAliX/_backlogs/backlog/NovAliX%20Team/Epics/?showParents=true
https://dev.azure.com/novalix/NovAliX/_sprints
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24936758
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24936758
https://github.com/novalixofficial
https://github.com/novalixofficial
https://github.com/novalixofficial
https://excalidraw.com/
https://app.diagrams.net/

3

[IT DEV Channel]

Microsoft Teams discussions and files

storage

Join with code : b444l6f

Then the path is :

Hardware Dependencies

1 nassyn.novalix.local [192.168.90.200]

1 //nassyn/IT/DEVS

PS : If you find a bit of documentation that’s misplaced, please store it in the appropriate folder, or ask somebody where it should go !

https://teams.microsoft.com/l/channel/19%3a506484af2a02493492e7a39fa2a593be%40thread.tacv2/General?groupId=1408e6cf-30ef-4c1b-9719-2a28036580d5&tenantId=8e0f5e25-5e93-4b13-bce9-821c8ef8b2e7
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/31129824
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/31129824

4

Our Azure Board

The Azure board is a complete and powerful tool to enable us organize our work💼.

But it can only work if we feed it 🍖 our everyday organisation items that pop continuously into our minds during our day to day

development, user meetings and discussions.

See Agile principles

Pacing of the Azure Board Usage in the team's life :

� Everyday
I have a thought about a new feature that we should implement -> New Feature with the tag "TBD", sorted under the correct Epic,

under the correct Area

I need to create a new user story for some additional work that I'm going to do : New User Story, ideally defined with the correct

format, sorted under the correct Feature, linked with the other related USes, assigned to you, under your current sprint

I finished developing a task : I look up the US #id and add it at the end of my commit with Git, I pass the tasks in status "Closed" in my

sprint board ("Resolved" if you still need to test it in pre-prod)

I completed a User Story : On the Team User Stories Board, I pass the US in status "deliverable" in my sprint board, and "closed"

when the sprint ended

I have a comment to make about a task / I have a question about a US / a task : Write a comment under the specific work item and

@ the targeted person

I worked on something that popped up and wasn't planned -> New Support ticket with a quick description on what's to do

� + � Every user interaction that creates a request / demand

Each meeting or discussion with the users must create new documented Features or new redacted User Stories. You can redact

them in the Team Backlog

The created user stories may have the "TBD" tag, and must always be in Approved state, meaning that the user have approved the

request but the devs haven't yet validated it.

This will allow to easily sort the different User Stories in the Team User Stories Board or on the Sprint Taskboard

🗓 Every two weeks : Day of the Sprint meeting (Friday)

I create the missing Feature / US or complete the Us that dont have any descriptions that I plan on presenting.

The Product Owners (often us, the devs) meet with the key users. We go through the Feature / User Story backlog together and

organize the next sprint. We can, in a second time, discuss about the second next sprint.

❌ We try to not create any work item in the Azure Board during this meeting ! Plan another meeting if you note that a lot of "non-trivial"

tasks are being added.

After that we evaluate, between devs with the poker planning method, the complexity of the tasks and write it on the US

We makes sure to conduct our meeting according the ☑ Sprint meeting Checklist

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25460749
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24838310
https://dev.azure.com/novalix/NovAliX/_boards/board/t/NovAliX%20Team/Stories
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://dev.azure.com/novalix/NovAliX/_backlogs/backlog/NovAliX%20Team/Stories/?showParents=true
https://dev.azure.com/novalix/NovAliX/_boards/board/t/NovAliX%20Team/Stories
https://dev.azure.com/novalix/NovAliX/_sprints/backlog/NovAliX%20Team/NovAliX/
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24871330

5

Feeding / Consuming process of Azure boards :

6

User Stories Effort Evaluation

Effort evaluation
You have the liberty to plan your efforts as you see fit. But during the Sprint Planification, we will evaluate the User Stories as Story Points.

They are arbitrary units that we use to describe the perceived complexity of a UserStory.

By using them repeatedly, we get a sense of which amount of complexity one person or one team, can accomplish during a sprint.

Here is the Link to the Story Point Achievement Tracking Board (broken). Be sure to normalize the amount of SP to 5 days when you report

the Story Point Achievement

Here is the link to the Scrum Metrics excel .

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24871330
https://teams.microsoft.com/l/file/31CD9F28-3408-49BD-BFD2-0F909D5A5918?tenantId=8e0f5e25-5e93-4b13-bce9-821c8ef8b2e7&fileType=xlsx&objectUrl=https%3A%2F%2Fnovalix67.sharepoint.com%2Fsites%2FITDEV%2FShared%20Documents%2FGeneral%2FStory%20Point%20Acheivement%20Tracking.xlsx&baseUrl=https%3A%2F%2Fnovalix67.sharepoint.com%2Fsites%2FITDEV&serviceName=teams&threadId=19%3A506484af2a02493492e7a39fa2a593be%40thread.tacv2&groupId=1408e6cf-30ef-4c1b-9719-2a28036580d5
https://novalix67-my.sharepoint.com/:f:/g/personal/ahorvat_novalix_com/Eut0kKKZzOJLrYvkz8acX6kBHJRcJIgnKUmz5BGKt6Dthg?e=GVCuj0

7

Internal Agile Implementation

An Agile project is organized in 4 layer of work items :

Level 1/2 - Organisation

Level 3 - Description and Evaluation

3 - User Story
Informal, natural language description of features of a software system. It explains a user focused feature in the most exhaustive way

possible so that it's easily implementable / testable / validable. It is written in a specific format :

1 - Epic
General objective, can be a set of

features of specific tasks tied together

by a theme.

The epic is limited in time (it's a rough

estimation of the end of the Epic, more

like an objective).

Examples :

Jan. 2021 Release / VDR needed

features / Full Bar code process

1 - Quest
General objective that is not limited in

time because it's cycling over and over.

It's a way to track regular actions that

we should perform in the team

Examples :

DEL daily operations

2 - Feature
Specific objectives linked from a

technical and user-usage viewpoint

Examples :

Inventory Management / Molecule

export / Full Admin BackEnd

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

As a [persona]:

Who are we building this for? The chemist, the manager, the general user ?

I want to:

Describe the action that the user wants to do **from its point of view**,

not in a developer--that-will-implement-it mindset

This is the feature

So that:

how does their immediate desire to do something this fit into their bigger picture ?

What’s the overall benefit they’re trying to achieve ? Who need this ?

What is the big problem that needs solving ?

The feature answer a need, what was that need ?

Acceptance criteria :

The user story is done when the user can do its action and, with the combination of all the right user stories,

Should the data appear in a list in front end ? Other data should be modified and visible ?

Should some side effect be executed (like a history for example) ?

Should an error appear if bad data are sent ? Which format should have the error ? in which case ?

8

Example :

As a Simple User

I want to login on enovalys with my novalix IDs

So that I can use the labbook for my research reporting

Acceptance Criteria : I can login with my novalix IDs in eNovalys && I can't login into enovalys if I don't have my IDs

Level 4 - Personal work breakdown

4 - Task

An implementation Task, there can be as many a wanted, linked together as desired. They are here to fulfill one or several user stories [ref

needed]. They can go through several state like : Conceptualisation / Developing / Testing / Deploying / Discussing etc...

Examples :

Add Field to interface / setup dev Env / create DB / Order Product / etc...

Ressources :
Epic examples

User Stories Example

Difference between each 4 items

https://www.visual-paradigm.com/scrum/theme-epic-user-story-task/

3 - Support Ticket / Support Item
Item that popped up during the project that required attention

and consumed StoryPoints. It may be part of a project or just

some general support.

The goal is to track how much of our work was planned and

how much was spontaneously added afterwards.

You can assign a value to them right after finishing it

Examples :

Export data for .. // Resolve production bug // Helped team

member for <Project> ..

3 - Bug
Like a US but can occur during a project. Can be planned or

spontaneous.

If planned need to assign a value to it at a sprint meeting,

otherwise just quantify it on the fly

Examples :

Add Field to interface / setup dev Env / create DB / Order

Product / etc...

https://www.atlassian.com/agile/project-management/epics#:~:text=Summary%3A%20An%20agile%20epic%20is,for%20agile%20and%20DevOps%20teams.&text=Epics%20are%20a%20helpful%20way,and%20to%20create%20a%20hierarchy.
https://www.atlassian.com/agile/project-management/user-stories
https://const.fr/blog/agile/scrum-differences-epics-stories-themes-features/
https://www.visual-paradigm.com/scrum/theme-epic-user-story-task/

9

Sprint Meeting Checklist

Here is the Link to the Story Point Achievement Tracking Board

Sprint Meeting Checklist

The day before, Alone

▢ 🎞 The demo is prepared and you have already done this demo the day before

▢ 🎞📃 The test sheet is redacted

▢ 🔄📜 You should have your Sprint Backlog ready with what's been done or not.

Pre-requisite

▢ 👦👩 You, the Product Owner, The DEV Team

▢ 📜 The Backlog of User Stories is complete and detailed, with all the work coming from various meetings with the users.

With PO and Users - Sprint meeting & Demo

▢ Display your progress with the help of your 🔄📜 Sprint Backlog

Were there roadblocks

What new topics were included in the sprint that wasn't planned at the start

▢ 🖍 Note the reason for outperformed or underperformed sprint. Speak only with the users about what concerns them directly (needed

information from them, etc...)

▢ 📦 Demo of the finished work, so for EACH US :

Take one US

Explain the acceptance criteria

Display how it has been implemented

Collect feedback in the form of new user stories or plan a meeting to collect feedback in-depth

Repeat

▢ 🔄 Plan the next sprint together with the use of Feedback AND 📜Backlog

The closed US if you forgot to close some

The US that will be moved back to the backlog due to lack of urgency

Move unfinished but to continue USes to next sprint

Add new one from backlog to complete the sprint

▢ Ask for priority in the displayed tasks.

Don't mention Story Points

Don't mention the (dev) tasks inside the user stories

Don't justify any lateness of tasks that isn’t caused by the users

No TBW or 'New' US can be present in a set sprint. Ideally, no TBD either.

https://novalix67-my.sharepoint.com/:x:/g/personal/ahorvat_novalix_com/ETJcYlYrbqhPoEk-ogZMRdEBBxwvFtTBs3rNxSpS_0kuRA?e=54ESWZ

10

Alone - US Brush-up / Self-improvement

▢ Store the created US under the correct Area Path / Epic

▢ 📑Correct any missing information or incomplete User Stories (TBW)

⛳ Explain / precise their goals so that the whole team can understand what te are story pointing

You may want to start to create Tasks to better subdivide your US

With the DEV Team - Story Pointing

▢ 🏷 Evaluate the User Stories with Story Points

▢ 📏 Tailor your sprint as you think you can realistically achieve it.

▢ 🎭 We validate together that we all followed this checklist principles or what we need to change

▢ 📨 Redact summary email with definitely planned tasks to the PO / users

▢ (mandatory) We give each other a pat on the back for being such pros 🤝🙌

Don't add new rules that haven't been validated by the users! Only explicit what you've just discussed or the technicalities of the US

Cheer up guys !

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25199244

11

General Glossary and Acronyms

We are developers, working among chemists, biologist and other exotic jobs.

We'll need to be sure of the term we use and hear !

Area Path

Dashboard
[Azure]

Add widgets and queries onto one single dashboard.

This allows you to simplify your everyday Azure experience

DEL
=> DNA Encoded Library

Technology that used DNA to generate millions of chemical libraries and subsequent data.

It's also the name of the novalix pole whose main task it is

ELN
=> Electronic Notebook

The tool the chemist use to report their experiences and production. It is at the center of their work.

We have our internal ELN : eNovalys, but several others are used in Novalix.

Iteration
[Azure] ... We don't really know at this point 😅

SDF format
SDF (Structure Data File) where structure mean chemical compound; is described here : Chemical table file (read both “mol” section

and “SDF” section)

Important Notes:

When we create / store SDF file (or mol files) we want to use the V3000 format (do not use the V2000, it does not correctly code the

Stereochemistry)

the “mol” format described in the documentation is often referred to as “MolBlock” in our code, especially when using RDKit.

SMILES
Smiles stand for Simplified Molecular Input Line Entry System.

We will prefer to use the extended SMILES from chemaxon, when needed (stereochemistry and / or)

A smiles files (.smi or .smiles) has the following format:

https://en.wikipedia.org/wiki/Chemical_table_file
https://en.wikipedia.org/wiki/Chemical_table_file
https://www.rdkit.org/
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://en.wikipedia.org/wiki/Simplified_molecular_input_line_entry_system
https://docs.chemaxon.com/display/docs/chemaxon-extended-smiles-and-smarts-cxsmiles-and-cxsmarts.md

12

The separator of the filed is a tabulation.

Tags
[Azure]

Additional informations on a work item for easy state description.

Currently we have TBD (To Be Defined) and TBW (To Be Written)

[DEL]

A chunk of DNA added to a library to identify it, each library is identified by its tags combination (A+B+C)

Query
[Azure]

Very complete tool to create views of all works items inside Azure, cross-project or not.

Resources
What's a project

1

2

3

Smiles Name property1 property2

CCl Methyl chloride 12.5 SNF

CO Methanol 5 NVX

https://docs.microsoft.com/en-us/azure/devops/organizations/projects/about-projects?view=azure-devops

13

Quickstarts

Refer to this article to know which computer configuration you should have to be able to work appropriatly at NovAliX : Hardware/OS sp

ecifics info to work at NovAliX

https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/61472774
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/61472774
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/61472774

14

Refresher Course for new members

Order of exercices to follow to be u-to-date to our current dev practices. The goal it to detect any question you might have on our

development practices.

It can be either Very specific on a how to write some piece to code, or very generic on the mechanics in play during a Front/Back Rest

communication.

The Lead Dev is here to help as well as any other team member !

1 - Documentation light-reading

Read all of our Team knowledge article. Yes its boring but try to gather at least main key point of each articles.

Here is the recommended order :

Our Internal Agile implementation

Our Taskboard

Global Knowledge

Dev to ops process

Versioning your projects

Code re-usability

2 - Install necessary tools

Developer QuickStart

3 - Technological Backend Training

We decided to follow somes popular technologies to ease our new members into the team and exploit the already existing librairies existing

:

ReactJS / Redux / MaterialUI

Python / Django Rest Framework

Docker

Here is a roadmap to go through all the topics used during your development :

3.1 - Python

Create a python project in which there are 4 files :

main.py / version.py / Worker.py / Desktop.py

version.py comes from the Common Team repository

Worker are :

Job, Name , Salary

string function to pretty print

use a dataclass to make the class

Desktop are :

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24936758
https://novalix.atlassian.net/wiki/spaces/DTKnowledge
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/24838310
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25395282
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25460850
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25199220
https://github.com/novalixofficial/CodeUtils/tree/main/python

15

Nb Place

Workers inside

one method to add a worker

If No more place, a message must be displayed and no worker added

One method to list worker presents

main.py must :

Create 2 desktop

Create 5 Worker

Try to add a worker to a desktop with no places left

Each time you run the program, the current version is updated the a message displays it

3.2 - Python Flask : A server

Use Conda to create an environment and use it to install flask.

Use the config.py file from the Common Team repository to prepare a JSON environment file

Start the default app with version.py and the config.py. The environnement must be decided by a environnement variable from your

system or your IDE.

If the variable says "DEV" a message prints "I'm in DEV ENV" if the environnement says "PROD" the message says "I'm in PROD ENV"

Everytime you run the project, the version.py is updated

Write a server that exposes the following API :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

openapi: 3.0.0

info:

 version: 1.0.0

 title: Sample API

paths:

 /:

 get:

 summary: Get Hello world message

 responses:

 '200':

 description: Hello world message with server version and config

 content:

 application/text:

 example : "Hello world, I'm at version 0.0.1"

 /files/:

 post:

 summary: Create a file with the provided name and content

 requestBody:

 required: true

 content:

 application/json:

 schema:

 type: object

 properties:

 name:

 type: string

 content:

 type: string

 responses:

 '200':

https://github.com/novalixofficial/CodeUtils/tree/main/python

16

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

 description: File created successfully

 '400':

 description: Invalid request payload (content length exceeds 100), name already exists

 '500':

 description: Something went bad on the serverside, join the execption

 get:

 summary: Get file list by criteria

 parameters:

 - name: name

 description: Will match any file where the name of the file contains the param value

 in: query

 schema:

 type: string

 - name: content

 description: Will match any file where the content of the file contains the param value

 in: query

 schema:

 type: string

 responses:

 '200':

 description: List of file names that match the criterias

 content:

 application/json:

 schema:

 type: array

 items:

 type: string

 description: File name

 '400':

 description: |

 parameter doesn't exist (if you put anything else than name or content as query param:

 /files/{name}:

 get:

 summary: Get file content by name

 parameters:

 - name: name

 required: true

 in: path

 schema:

 type: string

 responses:

 '200':

 description: File content retrieved successfully

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/FileResponse'

 '404':

 description: file not found

components:

 schemas:

 FileResponse:

 type: object

 properties:

 name:

 type: string

17

3.3 - Django Rest Framework

Do the same Exercice but with the framework Django-rest-framework

You won't write file on the system anymore but create a new entry in the database, in a table of your choice

Use the SQLite driver for managing the DB

The api must work in the same way as 3.2

3.4 - The NovAlix boilerplate

Start boilerplate BACK projet

Add db + config

Redo the same exercice (you can copy / paste code) with the boilerplate

Add a route that exposes :

4 - Technological Frontend Training

We will use the end of the Python exercice to feed our app.

4.1 - React

Use React to create :

localhost:3000/ home page listing all available file in the back

When you click on one file, it will take you a detail page, :

localhost:3000/file/<file_name> fetch the content of the file, and display it to the user

You also have a link in a header bar to create a new file :

localhost:3000/file/new a form to input name / content + Submit Button + Cancel Button

4.2 - React + Redux

Install redux to your project

90

91

 content:

 type: string

PS : This format is called .openapi and is used to describe APIs in a very explicit way, you can use the swagger editor with this api

to enhance your developer experience when communicating informations about APIs.

1

2

3

4

5

6

7

8

9

10

11

12

/files/all/:

 get:

 summary: Get all files

 responses:

 '200':

 description: File content retrieved successfully

 content:

 application/json:

 schema:

 type: array

 items:

 $ref: '#/components/schemas/FileResponse'

https://github.com/novalixofficial/NovalixFullstackBoilerplate
https://editor.swagger.io/

18

Do the exercice but now, except for the creation of a file, all data is stored in a redux slice.

The slice must be named 'fileSlice'

The slice must have at least two property :

'displayed' for displaying the current file being displayed

'allFiles' for storing all of the files fetched and displaying them

+Bonus point for making a filter in the front to filter through the list of files

5 - Boilerplate

Use your boilerplate with the Backend written from the previous exercices

Redo the 4.2 exercice with the Front react boilerplate.

6 - Conclusion

Congratulation !! You achieved using the full boilerplate and are now ready to start on a serious project. Don't worry, your colleague can help

you for any problem you may still have with the BP. They suffered through by the past 😋

Welcome to the team !

19

Python Environments

Specify the environment you want to work in with :

To be sure that you have a well setup environnement use the command :

conda list

It will display the list of packages presents in your env

If you want to freeze in a file such as requirement.txt use can use the reliable package pipreqs with pip install pipreqs and execute

pipreqs <PATH_TO_YOUR_PROJECT>

<PATH_TO_YOUR_PYTHON_EXEC> -m <APP_TO_START>

Example :

The command C:\ProgramData\Miniconda3\envs\crawler_env\python.exe -m pip install -r .\requirement.txt will install all the

requirements in the crawler_env environment , independently of if this environment was created with venv / conda or others.

Add new environments:

Environment creation

conda create --name myenv

Activate the environment

conda activate myenv

Then you can make install in youre env

20

Local Docker database

21

Postgres

Postgres Docker container 🐋
We will be using datagrip to generate the dump file and then use it to create our copy in a docker container

 pgdump 🐘
Once we are connected to our Postgres database in DataGrip(new>data source>PostgreSQL), we can generate a dump file

Right-click on the database(so on the second level, just below the data source)

Export with pg_dump

🚩 The "Path to pg_dump" should point toward the pg_dump.exe in your PostgreSQL install(usually in Program Files).

 Creating the docker container
The first thing to do is to pull the Postgres Docker image.

Then we can create our Docker container and name it Postgres.

We are mapping the container port with the host port so that we can access the database from the host operating system.

On success, the cmd will output the container ID.

The container should be visible and running in Docker.

 psql
Now we shall connect to our docker container in data grip on localhost:5432 (new>data source>PostgreSQL)

We can then restore the database with our dump.

Right-click on the container datasource

Restore with psql

🚩 Same as with pg_dump, the "Path to psql" should point toward the pg_dump.exe in your PostgreSQL install.

This should™ recreate the Postgres Database inside your Docker container and it should subsequently appear in
DataGrip

1

2

docker pull postgres

1

2

docker run --name postgres -e POSTGRES_HOST_AUTH_METHOD=trust -p 5432:5432 -d postgres

22

Mongodump

Mongo Docker container 🐋
We will be using datagrip to generate the dump file and then use it to create our copy in a docker container

 Mongodump 🍀
Creating a dump from a MongoDB database.

This will prompt you to enter the password of the user if needed.

🚩 This usually takes a while, but the output is very verbose.

On success, it will create a dump in the cmd folder containing the dump files.

 Creating the docker container
The first thing to do is to pull the MongoDB Docker image.

Then we can create our Docker container and name it mongodb.

We are mapping the container port with the host port so that we can access the database from the host operating system.

On success, the cmd will output the container ID.

The container should be visible and running in Docker.

We will now copy the mongodump into the docker container.

🚩 This might take a while and does not output anything while it is working.

 Mongorestore
Then we will be able to launch the restore from the newly created dump folder in the Docker container.

First, we launch a bash inside the container

Then we may launch the restore

This should once again take a while.

1 mongodump -- host 192.168.xxx.xxx:yyyyy --username admin

1 docker pull mongo

1 docker run -d -p 27017:27017 --name mongodb mongo

1 docker cp dumpPath containerName:/dump

1 docker exec -it containerName bash

1 mongorestore

23

Once this is done you should™ be able to access the database from localhost:27017

24

How to install a flask service on IIS

This tuto is a simplification of the tutorial : Deploying Python web app (Flask) in Windows Server (IIS) using FastCGI

1 - Installing CGI on IIS 7 / 10

Go to Server Manager then:

"Add Roles and Features" in Server Management

Do a Role-based or feature-based installation

In the "Server Roles" part, check Web Server (IIS) -> Web Server -> Application Developpement -> CGI

"Next" until "Install"

once done close the window

2 - Install WFastCGI

Open a terminal in admin mod and enter the following command to install wfastcgi and activate it:

Copy / paste the wfastcgi.py that has been added (normaly it's added in the following folder: C:\Program Files (x86)\Python37-

32\Lib\site-packages)

paste it in the folder C:\WebSites\[your_service_name]

2 - Install a new site in IIS to store the flask application

2.1 - Install the site

open IIS

add a new site with the name enovalysFlaskServer (check that the application pool is created with the same name)

as the physical path put C:\WebSites\[your_service_name]

select https and put 6767 as port the host name is www.soft-enovalys.com

be sur to have the port 6767 open in the firewall

2.2 - Open the port to the azure firewall

connect on azure portal: Microsoft Azure

select the virtual machine enovalysapp

go to point de terminaison

add a rule for flask where public and private port are 6767 (with TCP)

validate

2.3 - Add an handler

select this new website and click on Handler Mappings

click on the right and Add Module Mapping

as request path put *

as module part select FastCgiModule

as Executable (specify youre env if possible), select : "C:\[PATH_of_youre_python_env]\python.exe"|C:\WebSites\

[your_service_name]\wfastcgi.py

1

2

pip install wfastcgi

wfastcgi-enable

https://medium.com/@bilalbayasut/deploying-python-web-app-flask-in-windows-server-iis-using-fastcgi-6c1873ae0ad8
https://portal.azure.com/
https://portal.azure.com/

25

as name: PythonFlaskHandler

click on Request Restriction and check that "Invoke handle only ..." is uncheck

click on "OK"

on the window open click "Yes"

2.4 - Configure FastCGI

go to the root server settings and click "FastCGI Settings" you may have to quit and open again IIS manager

select the appropriate CGI configuration (double click on it)

in the opened window, click on Environment Variable -> on the 3 dots next (Collection)

add the 2 following variables:

PYTHONPATH with value : C:\WebSites\[your_service_name]

WSGI_HANDLER with value: app.APP as our application is called app.py and the main Flask application is named APP, be aware

that the cass is important

validate twice (button OK)

open services and stop the python crawler service if it's running

launch the site and click on the link

Troubleshoot

Env Var

Makes sure you have the correct Python and python Scripts path added in your global PATH

WHEN INSTALLING python version :

Check that python is installed for all users, otherwise FastCGI and IIS won't be able to acces the python exec at the right place,

Install everything globally, including module pip, and etc...

And restart the machine

If Cors error with flask :

The Cors(APP) instruction should be enough but if you have the rror stating :

Access-Control-Allow-Credentials' header in the response is '' which must be true'

Then add the header 'Access-Control-Allow-Credentials' set to 'true' in IIS in the Site "enovalysFlaskServer", in the "HTTP Headers" section

26

VSCode tips

Usefull plugins :

Django

Python

Docker

Live Share

Markdown All in One

Postman

YAML

Github Actions

Python Environment Manager

Usefull settings :

Search for ‘Wrap Tabs’ in the settings (Ctrl+Shift+P) and activate it. This will stack open files in the editor instead of making you scroll

horizontaly.

Use your conda env :
Ctrl + Shift + P → opens a parameters research dialog

Look for ‘Python : Select environment’, you should see your conda envs, select the one you want to use

Ps : If your app uses env variables, you can add them to the conda env so you don’t have to type them in each time you open a

terminal. Commands here : Managing environments — conda 23.9.1.dev39 documentation

Flow for VSCode :

Flow is a JS static type checker

https://marketplace.visualstudio.com/items?itemName=flowtype.flow-for-vscode

Make sure flow-bin is installed in npm packages

Install the Flow extension

On VSCode : Ctrl+P and look for the file '.config/Code/User/settings.json (just type settings and you should see it)

Add a line : ' "javascript.validate.enable": false '

Add ‘.flowconfig’ file to the root directory

Reload VSCode if nothing moves

Your files should now be staticaly checked by Flow

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#setting-environment-variables
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#setting-environment-variables
https://marketplace.visualstudio.com/items?itemName=flowtype.flow-for-vscode

27

Git tips

Branch cleaning on your computer
Fetching all remote branch

Clearing the one that dosen’t exist on remote

Removing all the local branch that doesn’t track a remote branch

Git Tag management

Creating a tag

pushing a tag

removing a tag

push the removal of a tag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

git checkout master

git fetch --all --prune

list the branch that you can delete on your computer because already merged somewhere

git branch --merged

delete them one by one

git branch -d <copy/paste from the previous list separated by a space>

then git branch --all to see if there is any leftover branch

#

it's possible that a branch that had its origin pruned is still present an

and doesn't appear in `git branch --merged` because it's unmerged

IN THIS CASE first make sure its defently merged somewhere, or that its LAST COMMIT

is present on another remote branch

THEN

git branch -D <name-of-branch-not-merged-but-already-has-another-remote-on-the-same-commit>

1

2

3

git tag v1.0.0 # Creates a lightweight tag at the current HEAD

git tag v1.1.0 1a2b3c4 # Creates a lightweight tag at commit 1a2b3c4

git tag -a v1.2.0 -m "Release 1.2.0" 2b3c4d5 # Creates an annotated tag with a message

1 git push origin v1.0.0 # Pushes the tag named v1.0.0 to the remote 'origin'

1 git tag -d v1.0.0 # Deletes the local tag v1.0.0

1 git push origin --delete v1.0.0 # Removes the tag v1.0.0 from the remote 'origin'

28

Software Development Practices

Why
We want to develop together, even when we're not developing on the same project.

To achieve that code coherence across our project, it's necessary that we discuss and nurture our common software development

knowledge together at all times.

To do that, we highly encourage you to write and discuss with the team about all practices that you deem important for all the team to be

aware about and apply.

Please do so here in this wiki chapter and don't hesitate to openly comment or edit the already written documents to make them better for

everyone.

29

Which Dev Flow to use

💻 Versioning with Git
We use GitHub For all of our Projects.

We have target deployment machine on the cloud as well as on-premises.

We use as much the Git CLI as softwares like git-extension or the basic gitk. Use whatever you want as long as you are still effective.

🔂 Use Conventional Commits

type can be one of [feat | fix | build | chore | ci | docs | style | refactor | perf | test | ...] .

scope is optional and can provide additional contextual information.

description is a small description.

The body should explain what you wrote and why. If the solution was complex and not trivial, explain the principles used to resolve the

problem to help the next person reviewing your code/commit.

footer can be used to reference issues, mark breaking changes, etc.

Examples:

Short one :

Detailed one :

Note that in Conventional Commits, a commit of the type fix patches a bug in your codebase, a commit of the type feat introduces a

new feature, and a BREAKING CHANGE introduces a breaking API change. This convention correlates with Semantic Versioning.

 Why Use Conventional Commits

Automatically generating CHANGELOGs.

Automatically determining a semantic version bump (based on the types of commits landed).

Communicating the nature of changes to teammates, the public, and other stakeholders.

Triggering build and publish processes.

Making it easier for people to contribute to your projects, by allowing them to explore a more structured commit history.

1

2

3

4

5

6

7

<type>[optional scope]: <description>

[optional body]

[optional footer(s)]

[Tags for Azure: AB#<azure-task-number>]

[Tags for Jira : <JIRA-ISSUE-KEY> #comment to add a comment]

1 feat(lang): add Polish language

1

2

3

4

5

6

7

fix(rest-usage): prevent racing of requests

Introduce a request id and a reference to the latest request. Dismiss

incoming responses other than from the latest request.

Reviewed-by: Z

Refs: #123 EN-1076 #resolve

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25395282

30

 Glossary of commit types

feat Commits, that adds a new feature

fix Commits, that fixes a bug

refactor Commits, that rewrite/restructure your code, however does not change any behaviour

perf Commits are special refactor commits, that improve performance

style Commits, that do not affect the meaning (white-space, formatting, missing semi-colons, etc)

test Commits, that add missing tests or correcting existing tests

docs Commits, that affect documentation only

build Commits, that affect build components like build tool, ci pipeline, dependencies, project version, ...

ops Commits, that affect operational components like infrastructure, deployment, backup, recovery, ...

chore Miscellaneous commits e.g. modifying .gitignore

❓ When to Branches, Commit, Pull Request, etc…
Given the size of your project, you may use one of the two main used versioning flow :

Git Flow for “complex” projects

GitHub Flow for “simple to medium” projects

♻🚚 Link to CI/CD
You developments will directly feed the CI/CD process explained here : CI/CD Process

Source CI/CD : Continuous Integration and Continuous Delivery (CI/CD) Fundamentals

Github Actions : Understanding GitHub Actions - GitHub Docs

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/90341378
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/90341378
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/90275844
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/90275844
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/62160911
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/62160911
https://resources.github.com/ci-cd/
https://resources.github.com/ci-cd/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions

31

Git Flow

Source : Git Flow vs GitHub Flow , adapted for our usage with the tags

Git commands for those actions : Git tips

When you’re project have complex multiple releases that have various dependencies (time, users, hardware, …) that dictates their releases.

The branches give the visibility on which release contains which features.

The tags give the visibility on which code is running where.

🔥 Hot fixes

Quick bug fix following a deployment on production.

Create a new branch HF-<nameOfFix>

no need to be tested by user

Merge to prod while Updating IHM/locales/release.json with the new patch number

X.X.+1

Merge to develop

Deploy before creating the 🔖tag on git

Increase the 🔖tag patch number X.X.+1-prod

Delete the HF-<nameOfFix> branch

� Start new sprint
Create new 📦 release branch R-<nameOfRelease>

�Start new dev for a clear objective (📦 release, � sprint)
Create one new branch F-<nameOfFeature>-<(azure[XXXX]|jira[EN-XXX])> for one feature,

US, bugfix, refac, etc… from develop

Write a new bloc in the IHM/locales/release.json with the bug/US you are developing (

understandable for the basic user). The bloc should not have a version an date

Work hard, play hard until ready to put in a 📦 release

Merge current branch into develop + Merge into 📦 release branch R-<nameOfRelease>

(merge your release.json)

Delete the F-<nameOfFeature>-<(azure[XXXX]|jira[EN-XXX])> branch

🧪 Put a release branch in QA for users
Select the release to put into QA R-<nameOfRelease>

Update IHM/locales/release.json with the version X.+1.0

Deploy on QA before creating the 🔖tag on git

🔖tag the appropriate version X.+1.0-qa

🎉 Put a Release to Production
Merge 📦 release branch R-<nameOfRelease> to master

Report the 🔖tag of the release X.X.X-qa to production, changing the end to X.X.X-prod

Deploy on Production before creating the 🔖tag on git

Delete the release branch R-<nameOfRelease>

🧪� Edit Release from QA returns
Develop on the 📦 release branch R-<nameOfRelease>

Deploy on QA before moving the 🔖tag on git

Delete the current 🔖tag X.X.X-qa

Create the 🔖Tag X.X.X-qa to the new HEAD of the branch

 Making your first impact to the project :

Introduction :

Before typing your first line of code, make sure you’ve fetched all the remote things (branches,

tags…)

Pushing your branch :

After you commited everything and you finished your work on this feature, fix, etc… you will have to

push your local branch to the remote repository.

Make sure you are on the right branch using git branch or git status .

Then push the branch.

https://www.alexhyett.com/git-flow-github-flow/
https://www.alexhyett.com/git-flow-github-flow/
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/76513283
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/76513283

32

After fetching everything and according to the Git Flow we’re using, now you will have to switch

on the develop branch, and after this you will create your personal branch.

You can make sure you are on the right branch, and list all the branches available using git

branch .

Now you can create your new branch and work on it.

You can now start coding !

Committing changes :

You will have to commit your changes at each steps of the development process. It’s preferable to

commit very often.

How to commit :

See what file you created, modified, all the things you need to commit.

Next you will add the file you want to commit :

After adding your file, you can commit, using a message, describing what you did.

You can use Git Extensions or another tool to help you to manage your Git repositories

or simply use the command line if you are more comfortable with it.

Remember : tools used at NovAliX.

1

2

git fetch <remote> // Fetch all of the branches from the repository. This also

git fetch <remote> <branch> // Only fetch the branch.

<git fetch> - documentation.

1 git checkout develop // Switch to the develop branch.

Remember to respect the naming conventions above !

1 git checkout -b <your_branch_name> // Create and switch to your new branch.

Recommended : you should commit whenever you want, when something is working, who

doesn’t break anything, fixed something…

Not recommended (don’t do this) : commit when you finished all your work, it will create a

commit for all of your different files you’ve created. Again don’t do this.

It’s recommended to git commit and git push (we will see this one after) to avoid losing

your work.

We don't know what could happen

1 git status // Show the working tree status.

1

2

git add <your_file_name> // Add file contents to the index.

git add . // Add everything, not recommended.

Remember to respect the naming conventions !

1 git commit -m <your_commit_message> // Record changes to the repository.

You will probably be prompted to set the remote as upstream. Just do what is prompted.

You now have pushed your branch to the remote repository !

Merging your branch to the release :

You can fetch the remote branches to get the latest one, you will now have access to the release

branch.

Remember to use git branch or git status to check your branch.

Now you can git checkout <release_branch> , you are now on the release branch.

Start the merge : git merge -no-ff <name_of_your_branch_you've_just_pushed/worked_on> .

There will be conflicts, you need to resolve them to complete the merge. Use the editor or the

tools you want to resolve it.

After the conflicts are resolved you need to commit your changes, simply git commit .

Push the changes : git push

You can now delete your branch locally and remotely :

git branch -d <name_of_your_branch_pushed_recently>

You just merged your branch for the release !

Updating the release.json file :

You will now have to update the release.json file, you can do it before the merge if you want to.

For my example :

Still on the release branch, use what you learnt : git status , git add , git commit , git

push .

If there are no problems you should have completed everything !

🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉Congratulations ! You just made

your first impact on the project !🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉

1 git push // Update remote refs along with associated objects.

1 git push --set-upstream origin <your_branch_name>

The next step is to merge your branch with the release branch.

It’s possible that the release branch is not created yet !

If you planned to be absent, YOU NEED TO COMMUNICATE the fact that you have

pushed your branch and ask for a merge in time !

If the release branch is created you will have to merge your pushed branch into the

release branch. This is the next step.

You don’t have the obligation to create a message here, one message is generated.

Delete remotely using Git Extensions or your tool.

Use the file as example and respect conventions, be clear on what you describe.

1

2

3

4

5

6

7

8

9

10

11

// release.json

{

 "LATEST_VERSION": "v4.8.0",

 "DATE": "",

 "ENHANCEMENT": [

],

 "FIXED_BUG": [

 "List of Witness Experiment was slow to load."

]

}

https://gitextensions.github.io/
https://novalix.atlassian.net/wiki/spaces/DTInfrastructure/pages/61472774/Hardware+OS+specifics+info+to+work+at+NovAliX
https://git-scm.com/docs/git-fetch/fr
https://gitextensions.github.io/

33

You can use AB# to link from GitHub to Azure Boards work items.

Usage : git commit -m 'fix(witnessLoading): added release note after merging

AB#4715'

You will need to replace “4715” with the ID on the Azure Board.

Do this for every files, and remember to commit very often.

34

GitHub Flow

Source : Git Flow vs GitHub Flow , adapted for our usage with the tags

Git commands for those actions : Git tips

🔥 Hot fixes

Quick bug fix following a deployment on production.

Create a new branch HF-<nameOfFix>

Check automated tests before commit

no need to be tested by user

Update your version.py with the version X.X.+1

🔖tag patch number on HF-<nameOfFix> with X.X.+1-staging to check that your commit

won’t break infrastructure

Deploy manually if not done automatically

PR to master

🔖tag patch number in master with X.X.+1-prod

Delete the HF-<nameOfFix> branch

Deploy manually if not done automatically

� Start new sprint
Pick a US to start working on

Create new 📦 Feature branch F-<nameOfFeature-AZUREREF>

No need to prepare a Release branch, you will put your feature in testing continuously

�Start new dev for a clear objective (📦 release, � sprint)
Create one new branch F-<nameOfFeature>-<(azure[XXXX]|jira[EN-XXX])> for one

feature, US, bugfix, refac, etc… from master

Prepare your version.py with version 0.0.0 because you don’t know the final version

beforehand

Work hard, play hard until ready to put in staging / QA

🧪 Put a Feature in QA for user
Update your version.py with version X.+1.0 because its the target version for this staging

build

🔖tag with X.+1.0-staging , if it already exists, just move the tag to your branch

Deploy manually if not done automatically

Check that nothing breaks

→ If 🔖 X.+1.0-qa don’t exists, then🔖tag with X.+1.0-qa

→ If 🔖 X.+1.0-qa already exist, then PR your branch to the tag then move the tag to the

newly created commit

Deploy manually if not done automatically

🎉 Put a Feature in Production
Add the tag X.+1.0-prod to the commit that already have passed the commits with the

same version qa and staging

Deploy manually if not done automatically

🧪� Edit Release from QA returns
Change the code on the branch that contains the same 🔖tag X.X.X-qa as the version

your user are communicating to you about (make sure they can see the version so you don’t

get lost)

move the 🔖tag X.X.X-qa to the new head of this branch

Deploy manually if not done automatically

https://www.alexhyett.com/git-flow-github-flow/
https://www.alexhyett.com/git-flow-github-flow/
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/76513283
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/76513283

35

Docker Usage

36

37

Exemple des commandes :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

docker build -t XXXX . // build le dockerfile (XXXX = nom de l'image) et le '.'

docker images // récupère la liste des images docker

docker rmi XXXX // supprime les images (XXXX = id)

docker ps -a // liste des dockers qui tourne

docker run -d XXXXX // lance le docker séparément

docker stop XXXXX // stop le run du docker (XXXXX = Name / Id)

docker rm XXXX // supp le docker (XXXXX = Name / Id)

docker run test:latest -p 3333:5000 XXXX // Spécifie le port entre le pc et le docker

docker run -p 3333:5000 --name YYYYY XXXXX // Donne un nom au run(process) du docker

Exemple de commande :

docker run -d -p 3333:5000 --name test-docker-01 test

docker run -d -p 3333:5000 --name test-docker-01 test --mount type=bind,source=/tmp,target=/usr

 // Commande pour monter un espace (Volume)

//Curl GET et POST

curl -X GET http://localhost:3333 (sans le s au http)

curl -X POST -H "Content-Type: application/json" -d "{\"name\":\"test3.txt\", \"content\":\"test content\"}" htt

docker exec -it test-docker-01 sh //Pour avoir un bash dans le docker

docker image prune // remove all unused image

38

Glossary

Container
A running Docker Image that can be altered by command line when 'entering' the container.

The alterations will not save the modified data between start/stop except for the data that are mounted .

Docker Hub
Public repository of standard and maintained images. The description contains the avalables port / mount / env vars and options for the

building up of your container / dockerfile with this image

Dockerfile
Succession of specific docker Docker Instructions (see Docker file Cheatsheet) that will each create a layer to form a final Image.

A dockerfile often start from another public image from the docker hub (ex : postgre)

Image
Succession of layers, each of them being an docker operation that will add up to the final state of the container we want to run

Mount
Link between the inside of a container (src folder) and the host (dest folder).

The data will be read/written in the folder on the host instead of inside the container.

The apps inside the container have no knowledge of mounts and only see the folder inside the containers.

Dockerfile Cheatsheet

Dockerfile References

https://kapeli.com/cheat_sheets/Dockerfile.docset/Contents/Resources/Documents/index
https://hub.docker.com/_/postgres
https://kapeli.com/cheat_sheets/Dockerfile.docset/Contents/Resources/Documents/index
https://docs.docker.com/engine/reference/builder/

39

Architecturing projects

Planning the development of a new project in a stable and durable manner takes time, time which will be saved later in the process.

The time consumed will produce discussions and more importantly documents that will hold the very core documentation and stability of

the software developed later on.

There are many ways of implementing this planning and the eNovalys team we want to it it that way.

⛳ Goal

By cementing our ideas and projects designs in document formats, we wan create a concrete, well documented foundation to hold our

following discussions, changes of plan, features additions and other part of the project life.

A new project will likely use some of the original architecture's existing features, and need the creations of new ones. Thus it's important to

keep track of the current states of different aspects of our designs, architectures, state of developments etc...

We follow this goal with the help of several concepts.

We don't follow any of them rigorously but borrow from them while keeping in mind the state of our ressources.

🔍 Concepts

The whole approach is based on several concepts :

The MoSCoW Prioritization

The 4+1 architectural view model

Information System Urbanisation

The Microservice Architecture

Our Internal Agile implementation

Attention

All notes which arises from complementary discussions MUST be written in the associated items which brought up the discussion.

This aim to save a huge amount of discussion in this process which is design to create a maximum of discussion before the development of

the project.

Tools

Draw.io : General purpose online Diagram Editor (a bit clunky)

XMind.net : Easy MindMapping tool

https://www.productplan.com/glossary/moscow-prioritization/#:~:text=MoSCoW%20prioritization%2C%20also%20known%20as,will%20not%20have%20right%20now.
https://en.wikipedia.org/wiki/4%2B1_architectural_view_model
https://globalalliancetech.com/larchitecture-des-systemes-dinformations/
https://microservices.io/
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
http://draw.io/
http://xmind.net/

40

1 - End User

The End User knows best
All design processes must start with discussions with the end-users that will often describe their "Dream tool" without any regards for any

software or physical realism.

And that's okay ! You job is to get from this discussions the following elements with as much clarity as possible.

In the current process/tool :

What is satisfactory

Why is it satisfactory (why it shouldn't change)

What isn't satisfactory

Why isn't it satisfactory

Then the question :

Which of those items truly need software development ?

Can they not be solved/fulfilled by just a different process design ? The increase or decrease of some ressources inside the process ?

etc...

And finally :

How would you classify those need by order of Must Should Could Won't

The goal is to bring the user to talk about the real need to fulfill and for you to reduce the amount of necessary work.

Remember : The user knows the process better than you, you can trust him to give you the truth about the real need of the project,

even when it doesn't seem important/logical to you.

Only He, can help you create real value.

Notes and Comments

📰 Deliverable Examples

https://www.productplan.com/glossary/moscow-prioritization/#:~:text=MoSCoW%20prioritization%2C%20also%20known%20as,will%20not%20have%20right%20now.

41

2 - User Stories

How to avoid re-describing the same thing over and over
(4+1 View => Scenarios)

All the user demands will result in a very concrete set of Use Cases written as User Stories. There can be a dozen or a hundred of US

generated by this process.

Even if it's painful to write, this will become the source of truth for all following discussions with your end-users and will avoid a lot of

headaches.

Try to include your notes in the user stories to explicit where they come from.

This set of US will also become the basis for the following steps of the design process.

All comments and quirks of design which arises from complementary discussions MUST be written in the associated items which

brought up the discussion.

Once you have all of those user stories, you can start to group them in Features for easier ressource management

Azure DevOps User Stories

📰 Deliverables examples

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738
https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25100738

42

2.1 - Create user rights table

Know who can do what
The confusing discussion that goes "Ha but I don't want [role] to be able to [feature], only this [another role]" will go on for as long as the

project exists.

To prevent the pain linked to this problematic, solidify your knowledge of what are the existing roles, and which role have access to which

features. This can easily be done with an excel and it will be great to discuss with users in the future and to update when you pick up the

project later.

Don't be afraid to write as much lines as possible in your document, the more exhaustive the better

Excel joined in general doc folder (DevOps or git project) (broken)

📰 Deliverables examples

https://dev.azure.com/novalix/Team-Knowledge/_git/NovalixFullstackBoilerplate?path=/Resources/ExampleUserRights_v0.xlsx

43

3 - System Features

From user ideas to software
(4+1 = Logical View)

Once you have the set of necessary User Stories for the End User to fulfill its work, you can start to identify the System Features the

system need to be able to support those use cases.

This should bring you to check the already written documents about the current existing software feature of the system.

Then you can start writing up the new features to create.

All comments and quirks of design which arises from complementary discussions MUST be written in the associated items which

brought up the discussion.

Not too quick

When you do so, you'll also start to conceptualize some aspect of the step 4 as you want to create big feature that hold a lot of

functionalities and that's ok, you'll just need to keep those ideas not to far away. Just try to not hold on to it to much because it can cause

some confusions in the process, in the mean time, explode this big feature.

XMind of Software Features

📰 Deliverables examples

44

4 - Software Components

Do we start with the Data Manager™ or the Service Controller™ ?
(4+1 = Physical View)

The more you specify you features, the more it should become apparent that some of them will use the same group of resources, same

protocol of communication, same design patterns etc...

You group those in common Software Component

Those Software components will help you start with designing and developing one component at a time, thinking only about its constraint,

deployment, contract with other components.

You guessed it, those components will become micro-services ! 🙌

Also, depending on your resources, you'll be able to start the development of one or more component at a time without having to think of

the whole system the whole time. Bu that's for the next step.

All comments and quirks of design which arises from complementary discussions MUST be written in the associated items which

brought up the discussion.

Don't go too far, too quick

When grouping those components, you'll start to conceptualize the communication protocols and DB to use, code to write etc...

Like the previous step, don't let you focus to much on them as the goal is to design you component the way they make sense for the

FEATURES and not the DEVELOPMENT implementation.

XMind of software component regrouping the previous features

📰 Deliverable examples

45

5 - The APIs

Should I POST you my DTO and you 204 me an OK or should WEBSOCKET me
your ORM ?
(4+1 = Process View)

The process view must be quite concrete after the previous steps and a lot of note should relate to this one.

The goal is to explicit the data flux between components for them to be able to fulfill all of the User Stories.

We are talking about Contract of Communication that we often read implicitly as APIs

All comments and quirks of design which arises from complementary discussions MUST be written in the associated items which

brought up the discussion.

Not too quick ?
We are very close to the concrete software development at this point and you may complete this design process at the same time as the

Step 6.

Simply be aware that a strong contract will be used as a single source of truth between two microservices and as the user stories for end-

users, the contracts will avoid headaches and redundant discussion with other developers.

✅ Best Practice : OpenAPI Format with Swagger Editor

REST : Table of of URLS with associated DTOs and effects

Processes : Sequence diagrams of communications with Urls used

Others : Description of Inputs and Output for the protocols to use

📰 Deliverables Examples

https://editor.swagger.io/
https://editor.swagger.io/

46

6 - The Software

Praise the UML
(4+1 = Development View)

Now for the fun part, with all of the previous discussion and documents, you can start thinking about the implementation of your design.

You should end up knowing the necessary technologies and the Software Component that use them :

DB - Tables

Language - Classes - Tests - Design paterns

Protocols (REST / Websocket)

Parts of the Services Mesh used

Hosting - Deployment

And maybe others I'm forgetting.

All comments and quirks of design which arises from complementary discussions MUST be written in the associated items which

brought up the discussion.

Hosting / Deployment and the Infrastructure

The "hardware" used should be mapped or at least reference with the available IT Infra documentation

DB entities : Entity Relationship Diagram (the easiest)

DB design, Code design : Class Diagram

fine-grained development documentation : Today I Learned for programmers

Sequence diagrams, MCD, and other doc can be put in a Resources folder, Boilerplate example (broken)

📰 Deliverables example

https://www.smartdraw.com/entity-relationship-diagram/
https://www.guru99.com/uml-class-diagram.html
http://readme.md/
http://readme.md/
https://dev.azure.com/novalix/Team-Knowledge/_git/NovalixFullstackBoilerplate?path=/Resources

47

Toolchain Setup

WIP tool chain
Start

Traduction setup

conf file copy

etc...

Auto build : example Cake, / gulp

https://dev.azure.com/novalix/Team-Knowledge/_git/code-utils?path=%2Fjs%2Fgulp-example.js&version=GBmain (broken)

https://dev.azure.com/novalix/Team-Knowledge/_git/code-utils?path=%2Fjs%2Fgulp-example.js&version=GBmain

48

Deployement : What to do

Develop to ship 📦
You should build an application with some principles in mind (Readability, Modularity, Logging, Error management, etc...) and to those you

should add : Deployability.

That's to say that your app should be easily and quickly :

Buildable

Configurable

Stoppable

You can achieve this by using :

Single point of configuration (config.py / env.js)

CLI parameter to specify last minute parameters

Dependency specific : List every dependency required for running your app,

Automatically buildable, with external tools like Cake(C#) or Gulp (Js), or even bash/batch if it works for you

Of course document the specifics of your configuration. This will make the app conteneurisable and easily manageable (start/stop) as a

service.

Ship once, deliver everywhere 📬
Once you built your app, the deployment process should be done with an external tool dedicated to this task:

Nginx

IIS

specific WSGI apps

See Quickstarts for detailed deployment processes

source : Why use nginx for flask or django

https://novalix.atlassian.net/wiki/spaces/DTKnowledge/pages/25199220
https://medium.com/analytics-vidhya/why-use-nginx-for-flask-django-ror-d31a00de2141

49

Versioning your projects

Every project should have some sort of versioning incorporated to the code so that you can check the version of the project at runtime.

0. Why
You need to be able to go on a website, check the version, then check your git repo to know, if this bugfix or this feature has already been

implemented or not in the app your are watching.

To do that, the back should have a version, the front should have a version and you need to increment this version at each delivery !

For reference :

Major - Rare ▶ Involve changes to the user interface or underlying architecture. Major updates often require thorough testing and may

require users to learn new functionalities or adapt to changes in the software's behavior.

Minor - Occasionally, end of sprint ▶ Smaller changes and improvements to a software product, such as bug fixes, performance

optimizations, or minor feature additions. Minor updates are usually backward compatible with the previous version and do not require

significant changes to user workflows or relearning of the software.

Patch - Frequent, anytime ▶ Small, targeted update that addresses specific issues or vulnerabilities in a software product. Patches are

usually provided as quick updates that can be applied without requiring significant changes to the software's functionality.

Build - Each execution of the code ▶ Build is the number of time the project has been run/compiled. Used to determine how much work

has received this update. Also can be used to trace how much time the software has been executed.

Here are the solutions selected for different language at Novalix :

1. All projects
Have a README.md ! It will be the start of the documentation and is very easily accessible by every other developer. You should always

have a README.md file at the root of your project

2. Javascript

🏷 Version number

Have a version.json file at the root of your project and use a environment.js module to store the json file as a variable

⛓ Version dependency

Use the packages.json provided by the package manager npm . If not present, create it : npm init and npm install everything you

need.

Note : The packages.json file MUST be present in you git repository but NOT the node_modules folder.

3. Python

🏷 Version number

Use a small module to manage and manually or programatically update your version. That ay you will be able to easily manage automatic

version increment when compiling you project. And in the mean time you can always change the version manually through this file.

50

Here is a module that you can use as is : version.py

⛓ Version dependency

First, make sure that you have a conda environment for you project

installation link: Miniconda3

Install for all user and add it to the PATH for use it in command line.

PS : Always create a new environment for your project, if you're not familiar with conda, here is a cheatsheet

Then, make sure you have a requirements.txt file at the root of your project. If not :

If you want to export your conda environment dependencies : conda list -e > requirements.txt

If you want to export you current python.exe dependency (will export conda deps if you are in a conda env) : pip freeze >

requirements.txt or pip3 freeze > requirements.txt

🗃 Explicit every necessary packages !

You can manually add external url to install, the pip install -r requirements.txt will just execute pip install while appending the

next line of the file. so a url like git+ssh://git@github.com/flccrakers/moleculecrawlers#egg=moleculecrawlers can be added too !

1

2

3

4

5

conda create --name <your-env> python=3.9

cd <project-path>

conda activate <your_env>

(once env is activated, and if file is present) pip install -r requirements.txt

https://dev.azure.com/novalix/Team-Knowledge/_git/code-utils?path=/python/version.py
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/4.6.0/_downloads/52a95608c49671267e40c689e0bc00ca/conda-cheatsheet.pdf

51

Code re-usability

❓ Why
At NovAliX, we want to write as little code as possible for as much functionality as possible (who doesn't).

We also have an increasing demand for specialized tool sets for our own usage and efficiency. With the multiplication of projects and team

members, it will be increasingly difficult to not write some features two times in separate implementations.

Thus, we should always try to write our code with re-usability in mind.

Here are some Guidelines/Resources for how to develop in the most re-usable, and composable friendly way possible

👍 Humble Reminders

◼ Write code for others as well as you

When you implement some heavy algorithm that could be used for other purpose or even simply easily re-usable, try to separate

it(decouple) from the business it's linked to.

If there is more than one algorithm at play, put them in a specific module !

That way the logic will be re-usable in the rest of your application but also, maybe later, put in a published module for other projects to use !

◼ Name things in a way that can be understood by somebody not in the same project as you

Because people need to be able to browse our internal library and find if some code or algorithm hasn't been done before.

◼ Document the non-trivial behavior of your module ! And simply the API you are developing.

What good is a great module for SDF browsing if you have no idea how to use it ? A README.md file can bring a great deal of information

and !warning! about the usage, limitations, or constraints of your module.

◼ Use standardized objects to document in-code the data flow of your module
Use Classes and Types to describe inputs and outputs of your functions

Use DTO if there are external transmissions

Use a config.json (or anything else) for standalone projects and environment specifics variables (Examples)

Use a version.txt (or similar) to track your project changes, it's very helpful when working with other people ! (Examples)

🛠 Some technical and theoretical tools aimed for re-usability
Interfaces and abstract classes (C#)

Web Components (HTML/JS)

Pure Components (React)

Data Classes (Python)

Modules (JS / Python (mainly but really all modern languages))

SOLID principles (Theory of POO Reusability)

🧱 Concrete implementation of re-usability at NovAliX

https://github.com/novalixofficial/CodeUtils/tree/main/js/front-js-config
https://github.com/novalixofficial/CodeUtils/blob/main/js/version.js
https://www.infoworld.com/article/2928719/when-to-use-an-abstract-class-vs-interface-in-csharp.html
https://www.thinktecture.com/en/web-components/native-web-components-without-framework/
https://sebhastian.com/react-pure-component/
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design

52

ONGOING Microservices approach to projects

TODO Python module deployed as DevOps artifacts

TODO Web Component as DevOps artifacts

TODO React NovAlix Library

Status Concept

53

Indexes on database

Advanced PostgreSQL indexing tips in Django | Idego Group

Quick resume of most common indexes, not really exhaustive :

Hash Index – Summary:

Reduces index size.

In specific scenarios, it optimizes speed.

Great for big-size, almost unique values.

Inefficient when column data consists of similar values.

Does not allow for index sorting, composite and unique values or range search.

Partial Index – Summary:

Great for reducing index size.

Does not affect query speed.

Great for nullable columns.

Most efficient when a column is limited by its values set.

1 from django.db.models import Index

https://idego-group.com/blog/2022/10/20/advanced-postgresql-indexing-tips-in-django/
https://idego-group.com/blog/2022/10/20/advanced-postgresql-indexing-tips-in-django/

54

Conventionnal naming in project

55

Back-end Convention

Python and Django convention :

Explorer 📂 Module lowercase_with_underscores my_module.py

Explorer 📂 Django Service lowercase_with_underscores+'s

ervice'

"service_name"_service

Explorer 📂 Django Controller lowercase_with_underscores+'c

ontroller'

"controller_name"_controll

er

Explorer 📂 Django Serializer File lowercase_with_underscores+'

DTO'

"serializer_name"DTO

Code 📄 Django Serializer Class CapitalizedWords+'DTOSerializ

er'

"SerializerName"DTOSeriali

zer

Code 📄 Django Model Class CapitalizedWords "ModelName"Model

Code 📄 Global Variable lowercase_with_underscores my_global_variable

Code 📄 Exception CapitalizedError MyError

Code 📄 Private attribute/method _single_leading_underscore _private_var

Code 📄 Protected Variable single_trailing_underscore_ protected_var_

Code 📄 Magic Method __double_leading_underscore_

_

__init__

Code 📄 Class Attribute lowercase_with_underscores class_attribute

Code 📄 Django Field/Column lowercase_with_underscores my_field

Code 📄 Django ForeignKey lowercase_singular_model related_model

Where ? Element Convention Example

56

Front-end Convention

Components PascalCase Header, UserProfile, LoginForm

Files and Folders PascalCase for files, lowercase-hyphen for

folders

Header.js, UserProfile.jsx, login-form.js

Props camelCase title, userInfo, onSubmit, imageUrl

State/Variables camelCase isLoading, errorMessage, userData,

selectedItem

CSS/Styles lowercase-hyphen for classes, lowercase-

hyphen or underscore for files

.header, .user-profile, styles.css,

styles.module.css, .button, .button--primary

Function to render a part of a component

inside a component function

“render” + camelCase renderRow, renderAvatar …

Event Handlers in component functions “handle” + camelCase handleClick, handleChange, handleSubmit

Test a state / return a boolean [can/is/do/are/…] + testedState in

camelCase

The function must ask a question

isUserOnline, areRowsPresent,

canUserDoThat

Category Naming Convention Examples

57

How to win at Microservices

Mandatory read if your project API will be called by another app.

If you are the one consuming another application’s API, you have the right to request that the other project follow those guidelines.

